logo_2Cy.gif
Home About us Media Research Consultancy Training Site map Contact

Home » Research » Reliability of principal component analysis » References

  1. T.W. Anderson, Asymptotic theory for principal component analysis, Annals of Mathematical Statistics, 34 (1963) 122-148.
  2. M.S. Bartlett, Tests of significance in factor analysis, British Journal of Psychology (Statistical Section), 3 (1950) 77-85.
  3. M.S. Bartlett, A note on the multiplying factors for various c2 approximation, Journal of the Royal Statistical Society B, 16 (1954) 296-298.
  4. D.B. Clarkson, Estimating the standard errors of rotated factoMediar loadings by jackknifing, Psychometrika, 44 (1979) 297-314.
  5. N. Cliff, The eigenvalues-greater-than-one rule and the reliability of components, Psychological Bulletin, 103 (1988) 276-279.
  6. N. Cliff and C.D. Hamburger, The study of sampling errors in factor analysis by means of artificial experiments, Psychological Bulletin, 68 (1976) 430-445.
  7. A.K. Conlin, E.B. Martin and A.J. Morris, Confidence limits for contribution plots, Journal of Chemometrics, 14 (2000) 725-736.
  8. B.K. Dable and K.S. Booksh, Selecting significant factors by the noise addition method in principal component analysis, Journal of Chemometrics, 15 (2001) 591-613.
  9. A.W. Davis, Asymptotic theory for principal components analysis: non-normal case, Australian Journal of Statistics, 19 (1977) 206-212.
  10. P. Diaconis and B. Efron, Computer-intensive methods in statistics, Scientific American, 248 (1983) 96-108.
  11. M.L. Dudzinski, J.T. Chmura and C.B.H. Edwards, Repeatability of principal components in samples: normal and non-normal data sets compared, Multivariate Behavioral Research, 10 (1975) 109-118.
  12. D.L. Duewer, B.R. Kowalski and J.L. Fasching, Improving the reliability of factor analysis of chemical data by utilizing the measured analytical uncertainty, Analytical Chemistry, 48 (1976) 2002-2010.
  13. L.J. Gleser, Estimation in a multivariate "errors in variables" regression model: large sample results, Annals of Statistics, 9 (1981) 24-44.
  14. J. de Leeuw and J. Meulman, A special jackknife for multidimensional scaling, Journal of Classification, 3 (1986) 97-112.
  15. N.M. Faber, L.M.C. Buydens and G. Kateman, Standard errors in the eigenvalues of a cross-product matrix: theory and applications, Journal of Chemometrics, 7 (1993) 495-526.
  16. N.M. Faber, L.M.C. Buydens and G. Kateman, Aspects of pseudorank estimation methods based on the eigenvalues of principal component analysis of random matrices, Chemometrics and Intelligent Laboratory Systems, 25 (1994) 203-226.
  17. N.M. Faber, L.M.C. Buydens and G. Kateman, Aspects of pseudorank estimation methods based on an estimate of the size of the measurement error, Analytica Chimica Acta, 296 (1994) 1-22.
  18. N.M. Faber, M.J. Meinders, P. Geladi, M. Sjöström, L.M.C. Buydens and G. Kateman, Random error bias in principal component analysis. I: Derivation of theoretical predictions, Analytica Chimica Acta, 304 (1995) 257-271.
  19. N.M. Faber, M.J. Meinders, P. Geladi, M. Sjöström, L.M.C. Buydens and G. Kateman, Random error bias in principal component analysis. II: Application of theoretical predictions to multivariate problems, Analytica Chimica Acta, 304 (1995) 273-283.
  20. N.M. Faber and B.R. Kowalski, Critical evaluation of two F-tests for selecting the number of factors in abstract factor analysis, Analytica Chimica Acta, 337 (1997) 57-71.
  21. N.M. Faber and B.R. Kowalski, Modification of Malinowski's F-test for abstract factor analysis applied to the Quail Roost II data sets, Journal of Chemometrics, 11 (1997) 53-72.
  22. N.M. Faber, Modification of Malinowski's F-test for pseudorank estimation revisited, Computers and Chemistry, 23 (1999) 565-570.
  23. N.M. Faber, Note on a modified Faber-Kowalski F-test for abstract factor analysis, Journal of Chemometrics, 14 (2000) 371-374.
  24. N.M. Faber, Caveat in abstract factor analysis-based pseudorank estimation, Analytica Chimica Acta, 411 (2000) 157-161.
  25. A.R. Gibson, A.J. Baker and A. Moeed, Morphometric variation in introduced populations of the common myna (Acridotheres tristis): an application of the jackknife to principal component analysis, Systematic Zoology, 33 (1984) 408-421.
  26. M.A. Girshick, On the sampling theory of determinantal equations, Annals of Mathematical Statistics, 10 (1939) 203-224.
  27. L.A. Goodman and S.J. Haberman, The analysis of nonadditivity in two-way analysis of variance, Journal of the American Statistical Association, 85 (1990) 139-145.
  28. R.F. Hirsch, G.L. Wu and P.C. Tway, Reliability of factor analysis in the presence of random noise or outlying data, Chemometrics and Intelligent Laboratory Systems, 1 (1987) 265-272.
  29. D.A. Jackson, Bootstrapped principal component analysis - reply to Mehlman et al., Ecology, 76 (1995) 644-645.
  30. R.G. Knox, Effects of detrending and rescaling on correspondence analysis: solutions on stability and accuracy, Vegetatio, 83 (1989) 129-136.
  31. R.G. Knox and R.K. Peet, Bootstrapped ordination: a method for estimating sampling effects in indirect gradient analysis, Vegetatio, 80 (1989) 153-165.
  32. W.J. Krzanowski, Principles of Multivariate Analysis: a User's Perspective, Oxford University Press, Oxford, 1988, pp. 374-376.
  33. W.J. Krzanowski, On confidence regions in canonical variate analysis, Biometrika, 76 (1989) 107-116.
  34. W.J. Krzanowski and D. Radley, Nonparametric confidence and tolerance regions in canonical variate analysis, Biometrics, 45 (1989) 1163-1173.
  35. D.N. Lawley, Tests of significance for the latent roots of covariance and correlation matrices, Biometrika, 43 (1956) 128-136.
  36. W.-L. Loh, Estimating covariance matrices, Annals of Statistics, 19 (1991) 283-296.
  37. E.R. Malinowski, Theory of error in factor analysis, Analytical Chemistry, 49 (1977) 606-612.
  38. E.R. Malinowski, Determination of the number of factors and the experimental error in a data matrix, Analytical Chemistry, 49 (1977) 612-617.
  39. E.R. Malinowski, Theory of error applied to factor loadings resulting from combination target factor analysis, Analytica Chimica Acta, 122 (1980) 327-330.
  40. E.R. Malinowski, Theory of the distribution of error eigenvalues resulting from principal component analysis with applications to spectroscopic data, Journal of Chemometrics, 1 (1987) 33-40.
  41. E.R. Malinowski, Statistical F-tests for abstract factor analysis and target testing, Journal of Chemometrics, 3 (1988) 49-60.
  42. E.R. Malinowski, Factor Analysis in Chemistry, John Wiley, New York, 2002.
  43. D.W. Mehlman, U.L. Shepherd and D.A. Kelt, Bootstrapping principal component analysis - a comment, Ecology, 76 (1995) 640-643.
  44. L. Milan and J. Whittaker, Application of the parametric bootstrap to models that incorporate a singular value decomposition, Applied Statistics, 44 (1995) 31-49.
  45. M.N. Nounou, B.R. Bakshi, P.K. Goel and X. Shen, Bayesian principal component analysis, Journal of Chemometrics, 16 (2002) 576-595.
  46. H. Ogasawara, Standard errors of the principal component loadings for unstandardized and standardized variables, British Journal of Mathematical and Statistical Psychology, 53 (2000) 155-174.
  47. H. Ogasawara, Concise formulas for the standard errors of component loading estimates, Psychometrika, 67 (2002) 289-297.
  48. H. Ogasawara, Asymptotic biases of the unrotated/rotated solutions in principal component analysis, British Journal of Mathematical and Statistical Psychology, 57 (2004) 353-376.
  49. H. Ogasawara, Higher-order asymptotic standard error and asymptotic expansion in principal component analysis, Communications in Statistics - Simulation and Computation, 35 (2006) 201-223.
  50. P.R. Peres-Neto, D.A. Jackson and K.M. Somers, Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis, Ecology, 84 (2003) 2347-2363.
  51. V.D. Pillar, The bootstrapped ordination re-examined, Journal of Vegetation Science, 10 (1999) 895-902.
  52. T.J. Ringrose, Bootstrapping and correspondence analysis in archaeology, Journal of Archaeological Science, 19 (1992) 615-629.
  53. T.J. Ringrose and W.J. Krzanowski, Simulation study of confidence regions for canonical variate analysis, Statistics and Computing, 1 (1991) 41-46.
  54. B.A. Roscoe and P.K. Hopke, Error estimates for factor loadings and scores obtained with target transformation factor analysis, Analytica Chimica Acta, 132 (1981) 89-97.
  55. J.R. Schott, Canonical mean projections and confidence regions in canonical variate analysis, Biometrika, 77 (1990) 587-596.
  56. R. Sibson, Studies in the robustness of multidimensional scaling: Procrustes statistics, Journal of the Royal Statistical Society B, 40 (1978) 234-238.
  57. M.E. Tipping and C.M. Bishop, Probabilistic principal component analysis, Journal of the Royal Statistical Society B, 61 (1999) 611-622.
  58. S.L. Weinberg, J.D. Carroll and H.S. Cohen, Confidence regions for INDSCAL using the jackknife and bootstrap techniques, Psychometrika, 49 (1984) 475-491.
  59. P.H. Weiner, H.L. Liao and B.L. Karger, Application of factor analysis to the study of mixed retention mechanisms in gas-liquid chromatography and comparison to linear regression analysis, Analytical Chemistry, 46 (1974) 2182-2190.