logo_2Cy.gif
Home About us Media Research Consultancy Training Site map Contact

Home » Research » Maximum likelihood calibration » References

  1. D.T. Andrews, L. Chen, P.D. Wentzell and D.C. Hamilton, Comments on the relationship between principal components analysis and weighted linear regression for bivariate data sets, Chemometrics and Intelligent Laboratory Systems, 34 (1996) 231-244.
  2. D.T. Andrews and P.D. Wentzell, Applications of maximum likelihood principal component analysis: incomplete data sets and calibration transfer, Analytica Chimica Acta, 350 (1997) 341-352.
  3. R. Bro, N.D. Sidiropoulos and A.K. Smilde, Maximum likelihood fitting using ordinary least squares algorithms, Journal of Chemometrics, 16 (2002) 387-400.
  4. C.D. Brown, L. Vega-Montoto and P.D. Wentzell, Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration, Applied Spectroscopy, 54 (2000) 1055-1068.
  5. A.J. Burnham, J.F. MacGregor and R. Viveros, A statistical framework for multivariate latent variable regression methods based on maximum likelihood, Journal of Chemometrics, 13 (1999) 49-65.
  6. M.N. Leger and P.D. Wentzell, Maximum likelihood principal components regression on wavelet-compressed data, Applied Spectroscopy, 58 (2004) 855-862.
  7. M.N. Leger, L. Vega-Montoto and P.D. Wentzell, Methods for systematic investigation of measurement error covariance matrices, Chemometrics and Intelligent Laboratory Systems, 77 (2005) 181-205.
  8. M.N. Nounou, B.R. Bakshi, P.K. Goel and X. Shen, Bayesian principal component analysis, Journal of Chemometrics, 16 (2002) 576-595.
  9. M.S. Reis and P.M. Saraiva, Integration of data uncertainty in linear regression and process optimization, AIChE Journal, 51 (2005) 3007-3019.
  10. M.S. Reis and P.M. Saraiva, Heteroscedastic latent variable modelling with applications to multivariate statistical process control, Chemometrics and Intelligent Laboratory Systems, 80 (2006) 57-66.
  11. S.K. Schreyer, M. Bidinosti and P.D. Wentzell, Application of maximum likelihood principal components regression to fluorescence emission spectra, Applied Spectroscopy, 56 (2002) 789-796.
  12. M. Schuermans, I. Markovskya, P.D. Wentzell and S. Van Huffel, On the equivalence between total least squares and maximum likelihood PCA, Analytica Chimica Acta, 544 (2005) 254-267.
  13. L. Vega-Montoto and P.D. Wentzell, Maximum likelihood parallel factor analysis (MLPARAFAC), Journal of Chemometrics, 17 (2003) 237-253.
  14. L. Vega-Montoto, H. Gu and P.D. Wentzell, Mathematical improvements to maximum likelihood parallel factor analysis: theory and simulations, Journal of Chemometrics, 19 (2005) 216-235.
  15. L. Vega-Montoto and P.D. Wentzell, Mathematical improvements to maximum likelihood parallel factor analysis: experimental studies, Journal of Chemometrics, 19 (2005) 236-252.
  16. L. Vega-Montoto and P.D. Wentzell, Approaching the direct exponential curve resolution algorithm from a maximum likelihood perspective, Analytica Chimica Acta, 556 (2006) 383-399.
  17. P.D. Wentzell and M.T. Lohnes, Maximum likelihood principal component analysis with correlated measurement errors: theoretical and practical considerations, Chemometrics and Intelligent Laboratory Systems, 45 (1999) 65-85.
  18. P.D. Wentzell, D.T. Andrews, D.C. Hamilton, N.M. Faber and B.R. Kowalski, Maximum likelihood principal component analysis, Journal of Chemometrics, 11 (1997) 339-366.
  19. P.D. Wentzell, D.T. Andrews and B.R. Kowalski, Maximum likelihood multivariate calibration, Analytical Chemistry, 69 (1997) 2299-2311.