logo_2Cy.gif
Home About us Media Research Consultancy Training Site map Contact

Home » Research » Reliability of multiway calibration » References

  1. C.M. Andersen and R. Bro, Practical aspects of PARAFAC modeling of fluorescence excitation-emission data, Journal of Chemometrics, 17 (2003) 200-2155.
  2. K.S. Booksh and B.R. Kowalski, Error analysis of the generalized rank annihilation method, Journal of Chemometrics, 8 (1994) 45-63.
  3. R. Bro, Å. Rinnan and N.M. Faber, Standard error of prediction for multilinear PLS. 2. Practical implementation in fluorescence spectroscopy, Chemometrics and Intelligent Laboratory Systems, 75 (2005) 69-76.
  4. N.M. Faber, L.M.C. Buydens and G. Kateman, Generalized rank annihilation method. I: derivation of eigenvalue problems, Journal of Chemometrics, 8 (1994) 147-154.
  5. N.M. Faber, L.M.C. Buydens and G. Kateman, Generalized rank annihilation method. II: bias and variance in the estimated eigenvalues, Journal of Chemometrics, 8 (1994) 181-203.
  6. N.M. Faber, L.M.C. Buydens and G. Kateman, Generalized rank annihilation method. III: practical implementation, Journal of Chemometrics, 8 (1994) 273-285.
  7. N.M. Faber, A. Lorber and B.R. Kowalski, Generalized rank annihilation method: standard errors in the estimated eigenvalues if the instrumental errors are heteroscedastic and correlated, Journal of Chemometrics, 11 (1997) 95-109.
  8. N.M. Faber, Note on the error analysis of the generalized rank annihilation method, Analytical Letters, 32 (1999) 2899-2906.
  9. N.M. Faber, Note on a modified Faber-Kowalski F-test for abstract factor analysis, Journal of Chemometrics, 14 (2000) 371-374.
  10. N.M. Faber and R. Bro, Standard error of prediction for multiway PLS. 1. Background and a simulation study, Chemometrics and Intelligent Laboratory Systems, 61 (2002) 133-149.
  11. N.M. Faber, The price paid for the second-order advantage when using the generalized rank annihilation method (GRAM), Journal of Chemometrics, 15 (2001) 743-748.
  12. N.M. Faber, Quantifying the effect of measurement errors on the uncertainty in bilinear model predictions: a small simulation study, Analytica Chimica Acta, 439 (2001) 193-201.
  13. N.M. Faber, J. Ferré and R. Boqué, Iteratively reweighted generalized rank annihilation method. 1. Improved handling of prediction bias, Chemometrics and Intelligent Laboratory Systems, 55 (2001) 67-90.
  14. N.M. Faber, R. Boqué and J. Ferré, Iteratively reweighted generalized rank annihilation method. 2. Least squares property and variance expressions, Chemometrics and Intelligent Laboratory Systems, 55 (2001) 91-100.
  15. N.M. Faber, Towards a rehabilitation of the generalized rank annihilation method (GRAM), Analytical and Bioanalytical Chemistry, 372 (2002) 683-687.
  16. N.M. Faber, Comment on a recently proposed resampling method, Journal of Chemometrics, 15 (2001) 169-188.
  17. N.M. Faber, R. Bro and P.K. Hopke, Recent developments in CANDECOMP/PARAFAC algorithms: A critical review, Chemometrics and Intelligent Laboratory Systems, 65 (2003) 119-137.
  18. P.J. Gemperline, Computation of the range of feasible solutions in self-modeling curve resolution algorithms, Analytical Chemistry, 71 (1999) 5398-5404.
  19. M.J.P. Gerritsen, N.M. Faber, M. van Rijn, B.G.M. Vandeginste and G. Kateman, Realistic simulations of high-performance liquid chromatographic-ultraviolet data for the evaluation of multivariate techniques, Chemometrics and Intelligent Laboratory Systems, 12 (1992) 257-268.
  20. R.A. Harshman and W.S. De Sarbo, An application of PARAFAC to a small sample problem, demonstrating preprocessing, orthogonality constraints, and split-half diagnostic techniques. In Research Methods for Multimode Data Analysis, H.G. Law, C.W. Snyder, J.A. Hattie and R.P. McDonald (eds), Praeger, New York, 1984, 602-642.
  21. H.A.L. Kiers, Bootstrap confidence intervals for three-way methods, Journal of Chemometrics, 18 (2004) 22-36.
  22. M. Linder and R. Sundberg, Second order calibration: bilinear least squares regression and a simple alternative, Chemometrics and Intelligent Laboratory Systems, 42 (1998) 159-178.
  23. M. Linder and R. Sundberg, Precision of prediction in second-order calibration, with focus on bilinear regression methods, Journal of Chemometrics, 16 (2002) 12-27.
  24. X. Liu and N. Sidiropoulos, Cramér-Rao lower bounds for low-rank decomposition of multidimensional arrays, IEEE Transactions on Signal Processing, 49 (2001) 2074-2086.
  25. A. Liwo, P. Skurski, S. Oldziej, L. Lankiewicz, J. Malicka and W. Wiczk, A new approach to the resolution of the excitation-emission spectra of multicomponent systems, Computers and Chemistry, 21 (1997) 89-96.
  26. A.C. Olivieri and N.M. Faber, Standard error for prediction in parallel factor (PARAFAC) analysis of three-way data, Chemometrics and Intelligent Laboratory Systems, 70 (2004) 75-82.
  27. P. Paatero, A weighted non-negative least squares algorithm for three-way 'PARAFAC' factor analysis, Chemometrics and Intelligent Laboratory Systems, 38 (1997) 223-242.
  28. J. Riu and R. Bro, Jack-knife technique for outlier detection and estimation of standard errors in PARAFAC models, Chemometrics and Intelligent Laboratory Systems, 65 (2003) 35-49.
  29. S. Serneels, M. Moens, P.J. Van Espen and F. Blockhuys, Identification of micro-organisms by dint of the electronic nose and trilinear partial least squares regression, Analytica Chimica Acta, 516 (2004) 1-5.
  30. S. Serneels, P. Geladi, M. Moens, F. Blockhuys and P.J. Van Espen, Influence properties of trilinear partial least squares regression, Journal of Chemometrics, 19 (2005) 405-411.
  31. S. Serneels and P.J. Van Espen, Bootstrap confidence intervals for trilinear partial least squares regression, Analytica Chimica Acta, 544 (2005) 153-158.
  32. A.K. Smilde, Reply to 'Comment on a recently proposed resampling method', Journal of Chemometrics, 15 (2001) 189-192.