logo_2Cy.gif
Home About us Media Research Consultancy Training Site map Contact

Home » Research » Reliability of multivariate calibration » References

  1. S. Aji, S. Tavolaro, F. Lantz and A. Faraj, Apport du bootstrap à la régression PLS: application à la prédiction de la qualité des gazoles, Oil & Gas Science and Technology - Rev. IFP, 58 (2003) 599-608.
  2. T. Almøy and E. Haugland, Calibration methods for NIRS instruments: a theoretical evaluation and comparisons by data splitting and simulations, Applied Spectroscopy, 48 (1994) 327-332.
  3. The American Society for Testing and Materials (ASTM) Practice E1655-00. ASTM Annual Book of Standards, West Conshohocken, PA 19428-2959 USA, Vol. 03.06 (2001) 573-600.
  4. G. Baffi, E. Martin and J. Morris, Prediction intervals for non-linear projection to latent structures regression models, Chemometrics and Intelligent Laboratory Systems, 61 (2002) 151-165.
  5. A.J. Berger and M.S. Feld, Analytical method of estimating chemometric prediction error, Applied Spectroscopy, 51 (1997) 725-732.
  6. J.W.B. Braga and R.J. Poppi, Comparison of variance sources and confidence limits in two PLSR models for determination of the polymorphic purity of carbamazepine, Chemometrics and Intelligent Laboratory Systems, 80 (2006) 50-56.
  7. A.J. Burnham, J.F. MacGregor and R. Viveros, Latent variable multivariate regression modeling, Chemometrics and Intelligent Laboratory Systems, 48 (1999) 167-180.
  8. A.J. Burnham, J.F. MacGregor and R. Viveros, Interpretation of regression coefficients under a latent variable regression model, Journal of Chemometrics, 15 (2001) 265-284.
  9. V. Centner, D.-L. Massart, O.E. De Noord, S. De Jong, B.M. Vandeginste and C. Sterna, Elimination of uninformative variables for multivariate calibration, Analytical Chemistry, 68 (1996) 3851-3858.
  10. G. Chryssolouris, Confidence interval prediction for neural network models, IEEE Transactions on Neural Networks, 7 (1996) 229-232.
  11. D.B. Coates, "Is near infrared spectroscopy only as good as the laboratory reference values?" An empirical approach, Spectroscopy Europe, 24 (2002) 24-26.
  12. K. Danzer, M. Otto and L.A. Currie, Guidelines for calibration in analytical chemistry: Part 2. Multicomponent calibration, Pure & Applied Chemistry, submitted (2002).
  13. R.B. Davies and B. Hutton, The effect of errors in the independent variables in linear regression, Biometrika, 62 (1975) 383-391.
  14. M.C. Denham, Prediction intervals in partial least squares, Journal of Chemometrics, 11 (1997) 39-52.
  15. M.C. Denham, Choosing the number of factors in partial least squares regression: estimating and minimizing the mean squared error of prediction, Journal of Chemometrics, 14 (2000) 351-361.
  16. S. De Vries and C.J.F. Ter Braak, Prediction error in partial least squares regression: a critique on the deviation used in The Unscrambler, Chemometrics and Intelligent Laboratory Systems, 30 (1995) 239-245.
  17. R. DiFoggio, Examination of some misconceptions about near-infrared analysis, Applied Spectroscopy, 49 (1995) 67-75.
  18. R. DiFoggio, Guidelines for applying chemometrics to spectra: feasibility and error propagation, Applied Spectroscopy, 54 (2000) 94A-113A.
  19. W.J. Egan, W.E. Brewer and S.L. Morgan, Measurement of carboxyhemoglobin in forensic blood samples using UV-visible spectrometry and improved principal component regression, Applied Spectroscopy, 53 (1999) 218-225.
  20. N.M. Faber and B.R. Kowalski, Prediction error in least squares regression: further critique on the deviation used in The Unscrambler, Chemometrics and Intelligent Laboratory Systems, 34 (1996) 283-292.
  21. N.M. Faber and B.R. Kowalski, Comment on a recent sensitivity analysis of radial base function and multi-layer feed-forward neural network models, Chemometrics and Intelligent Laboratory Systems, 34 (1996) 293-297.
  22. N.M. Faber and B.R. Kowalski, Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares, Journal of Chemometrics, 11 (1997) 181-238.
  23. N.M. Faber and B.R. Kowalski, Improved prediction error estimates for multivariate calibration by correcting for the measurement error in the reference values, Applied Spectroscopy, 51 (1997) 660-665.
  24. N.M. Faber, D.L. Duewer, S.J. Choquette, T.L. Green and S.N. Chesler, Characterizing the uncertainty in near-infrared spectroscopic prediction of mixed-oxygenate concentrations in gasoline: sample-specific prediction intervals, Analytical Chemistry, 70 (1998) 2972-2982; 70 (1998) 4877.
  25. N.M. Faber, Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration, Chemometrics and Intelligent Laboratory Systems, 49 (1999) 79-89.
  26. N.M. Faber, A closer look at the bias-variance tradeoff in multivariate calibration, Journal of Chemometrics, 13 (1999) 185-192.
  27. N.M. Faber, Improved computation of the standard error in the regression coefficient estimates of a multivariate calibration model, Analytical Chemistry, 72 (2000) 4675-4676.
  28. N.M. Faber, Response to "Comments on construction of confidence intervals in connection with partial least squares", Journal of Chemometrics, 14 (2000) 363-369.
  29. N.M. Faber, Comparison of two recently proposed expressions for partial least squares regression prediction error, Chemometrics and Intelligent Laboratory Systems, 52 (2000) 123-134.
  30. N.M. Faber, Critical evaluation of a significance test for partial least squares regression, Analytica Chimica Acta, 432 (2001) 235-240.
  31. N.M. Faber, Uncertainty estimation for multivariate regression coefficients, Chemometrics and Intelligent Laboratory Systems, 64 (2002) 169-179.
  32. N.M. Faber, X.-H. Song and P.K. Hopke, Sample-specific standard error of prediction for partial least squares regression, Trends in Analytical Chemistry, 22 (2003) 330-334.
  33. J.A. Fernández Pierna, L. Jin, F. Wahl, N.M. Faber and D.L. Massart, Estimation of partial least squares regression (PLSR) prediction uncertainty when the reference values carry a sizeable measurement error, Chemometrics and Intelligent Laboratory Systems, 65 (2003) 281-291.
  34. N.B. Gallagher, B.M. Wise and D.M. Sheen, Error analysis for estimation of trace vapor concentration-pathlength in stack plumes, Applied Spectroscopy, 57 (2003) 614-621.
  35. R.A. Ganse, Y. Amemiya and W.A. Fuller, Prediction when both variables are subject to error, with application to earthquake magnitudes, Journal of the American Statistical Association, 78 (1983) 761-765.
  36. M.L. Griffiths, R.P. Barbagallo and J.T. Keer, Multiple and simultaneous fluorophore detection using fluorescence spectrometry and partial least-squares regression with sample-specific confidence intervals, Analytical Chemistry, 78 (2006) 513-523.
  37. M.L. Griffiths and S.L.R. Ellison, A simple numerical method of estimating the contribution of reference value uncertainties to sample-specific uncertainties in multivariate regression, Chemometrics and Intelligent Laboratory Systems, 83 (2006) 133-138.
  38. A.J. Hardy, P. MacLaurin, S.J. Haswell, S. De Jong and B.G.M. Vandeginste, Double-case diagnostic for outliers identification, Chemometrics and Intelligent Laboratory Systems, 34 (1996) 117-129.
  39. S.D. Hodges and P.G. Moore, Data uncertainties and least squares regression, Applied Statistics, 21 (1972) 185-195.
  40. A. Höskuldsson, PLS regression methods, Journal of Chemometrics, 2 (1988) 211-228.
  41. M. Høy and H. Martens, Review of partial least squares regression prediction error in Unscrambler, Chemometrics and Intelligent Laboratory Systems, 44 (1998) 123-133.
  42. J.T. Hwang and A. Ding, Prediction intervals for artificial neural networks, Journal of the American Statistical Association, 92 (1997) 748-757.
  43. T.V. Karstang, J. Toft and O.M. Kvalheim, Estimation of prediction error for samples within the calibration range, Journal of Chemometrics, 6 (1992) 177-188.
  44. H.R. Keller, J. Röttele and H. Bartels, Assessment of the quality of latent variable calibrations based on Monte Carlo simulations, Analytical Chemistry, 66 (1994) 937-943.
  45. R.E. Kleinknecht, Error estimation in PLS latent variable structure, Journal of Chemometrics, 10 (1996) 687-695.
  46. A. Lorber and B.R. Kowalski, The effect of interferences and calibration design on accuracy: implementations for sensor and sample selection, Journal of Chemometrics, 2 (1988) 67-79.
  47. A. Lorber and B.R. Kowalski, Estimation of prediction error for multivariate calibration, Journal of Chemometrics, 2 (1988) 93-109.
  48. A. Lorber, N.M. Faber and B.R. Kowalski, Local centering in multivariate calibration, Journal of Chemometrics, 10 (1996) 215-220.
  49. J.R. Magnus and H. Neudecker, Matrix differential calculus with applications in statistics and econometrics, John Wiley, Chichester, 1988.
  50. H. Martens and P. Dardenne, Validation and verification of regression in small data sets, Chemometrics and Intelligent Laboratory Systems, 44 (1998) 99-121.
  51. H. Martens and M. Martens, Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR), Food Quality and Preference, 11 (2000) 5-16.
  52. H. Martens and M. Martens, Multivariate analysis of quality - an introduction, John Wiley, Chichester, 2000.
  53. H. Martens, M. Høy, F. Westad, D. Folkenberg and M. Martens, Analysis of designed experiments by stabilised PLS Regression and jack-knifing, Chemometrics and Intelligent Laboratory Systems, 58 (2001) 151-170.
  54. M.G. Moran and B.R. Kowalski, Effect of random experimental error on the generalized standard addition method, Analytical Chemistry, 56 (1984) 562-569.
  55. T. Morsing and C. Ekman, Comments on construction of confidence intervals in connection with partial least squares, Journal of Chemometrics, 12 (1998) 295-299.
  56. B. Nadler and R.R. Coifman, Partial least squares, Beer's law and the net analyte signal: statistical modeling and analysis, Journal of Chemometrics, 19 (2005) 45-54.
  57. B. Nadler and R.R. Coifman, The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration, Journal of Chemometrics, 19 (2005) 107-118.
  58. T. Næs and H. Martens, Principal component regression in NIR analysis: viewpoints, background details and selection of components, Journal of Chemometrics, 2 (1988) 155-167.
  59. P.R.C. Nelson, P.A. Taylor and J.F. MacGregor, Missing data methods in PCA and PLS: Score calculations with incomplete observations, Chemometrics and Intelligent Laboratory Systems, 35 (1996) 45-65.
  60. P.R.C. Nelson, J.F. MacGregor and P.A. Taylor, The impact of missing measurements on PCA and PLS prediction and monitoring applications, Chemometrics and Intelligent Laboratory Systems, 80 (2006) 1-12.
  61. P. Nomikos and J.F. MacGregor, Multi-way partial least squares in monitoring batch processes, Chemometrics and Intelligent Laboratory Systems, 30 (1995) 97-108.
  62. A.C. Olivieri, A simple approach to uncertainty propagation in preprocessed multivariate calibration, Journal of Chemometrics, 16 (2002) 207-217.
  63. A. Phatak, P.M. Reilly and A. Penlidis, An approach to interval estimation in partial least squares regression, Analytica Chimica Acta, 277 (1993) 495-501.
  64. A.L. Pomerantsev and O.Ye. Rodionova, Prediction of antioxidants activity using DSC measurements. A feasibility study, In Aging of Polymers, Polymer Blends and Polymer Composites, 2, Nova science Publishers, NY, 2002, pp. 19-29 (ISBN 1-59033-256-3).
  65. T. Roy, Bootstrap accuracy for non-linear regression models, Journal of Chemometrics, 8 (1994) 37-44.
  66. S. Serneels, P. Lemberge and P.J. Van Espen, Calculation of PLS prediction intervals using efficient recursion relations for the Jacobian matrix, Journal of Chemometrics, 18 (2004) 76-80.
  67. S. Serneels, C. Croux and P.J. Van Espen, Influence properties of partial least squares regression, Chemometrics and Intelligent Laboratory Systems, 71 (2004) 13-20.
  68. S. Serneels, P. Lemberge and P. J. Van Espen (2003). Sample specific prediction intervals in SIMPLS. In: M. Vilares, M. Tenenhaus, P. Coelho, V. Esposito Vinzi and A. Morineau (eds.), PLS and related methods, pp. 219-233. DECISIA, Levallois Perret, France.
  69. X.-H. Song, N.M. Faber, P.K. Hopke, D.T. Suess, K.A. Prather, J.J. Schauer and G.R. Cass, Source apportionment of gasoline and diesel by multivariate calibration based on single particle mass spectral data, Analytica Chimica Acta, 446 (2001) 329-343.
  70. L.K. Sørensen, True accuracy of near infrared spectroscopy and its dependence on precision of reference data, Journal of Near Infrared Spectroscopy, 10 (2002) 15-25.
  71. R.A. Stine, Bootstrap prediction intervals for regression, Journal of the American Statistical Association, 80 (1994) 1026-1031.
  72. G.W. Stewart, Perturbation theory and least squares with errors in the variables, Contemporary Mathematics, 112 (1990) 171-181.
  73. P. Stoica and T. Södertröm, Partial least squares: a first-order analysis, Scandinavian Journal of Statistics, 25 (1998) 17-24.
  74. R. Sundberg, Interplay between chemistry and statistics, with special reference to calibration and the generalized standard addition method, Chemometrics and Intelligent Laboratory Systems, 4 (1988) 299-305.
  75. H. van der Voet, Pseudo-degrees of freedom for complex predictive models: the example of partial least squares, Journal of Chemometrics, 13 (1999) 195-208.
  76. S. Van Huffel and J. Vanderwalle, The total least squares problem: computational aspects and analysis, Society for Industrial and Applied Mathematics, Philadelphia, 1991.
  77. R. Wehrens and W.E. Van der Linden, Bootstrapping principal component regression models, Journal of Chemometrics, 11 (1997) 157-171.
  78. R. Wehrens, H. Putter and L.M.C. Buydens, The bootstrap: a tutorial, Chemometrics and Intelligent Laboratory Systems, 54 (2000) 35-52.
  79. F. Westad and H. Martens, Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression, Journal of Near Infrared Spectroscopy, 8 (2000) 117-124.
  80. R. Wolthuis, G.C.H. Tjiang, G.J. Puppels, T.C. Bakker Schut, Estimating the influence of experimental parameters on the prediction error of PLS calibration models based on Raman spectra, Journal of Raman Spectroscopy, 37 (2006) 447-466.