logo_2Cy.gif
Home About us Media Research Consultancy Training Site map Contact

Home » Research » Limit of detection » References

  1. Analytical Methods Committee, Recommendations for the definition, estimation and use of the detection limit, The Analyst, 112 (1987) 199-204.
  2. Analytical Methods Committee, Measurement of near zero concentration: recording and reporting results that fall close to or below the detection limit, The Analyst, 126 (2001) 256-259.
  3. G. Bauer, W. Wegscheider and H.M. Ortner, Limits of detection in multivariate calibration, Fresenius Journal of Analytical Chemistry, 340 (1991) 135-139.
  4. G. Bauer, W. Wegscheider and H.M. Ortner, Selectivity and limits of detection in inductively coupled plasma optical emission spectrometry using multivariate calibration, Spectrochimica Acta, 47B (1992) 179-188.
  5. K.S. Booksh and B.R. Kowalski, Theory of analytical chemistry, Analytical Chemistry, 66 (1994) 782A-791A.
  6. K.S. Booksh, A.R. Muroski and M.L. Myrick, Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 2. Calibration and quantitation of naphthalene and styrene, Analytical Chemistry, 68 (1996) 3539-3544.
  7. R. Boqué and F.X. Rius, Multivariate detection limit estimators, Chemometrics and Intelligent Laboratory Systems, 32 (1996) 11-23.
  8. R. Boqué and F.X. Rius, Detection limits in GC-MS multivariate analysis, Química Analítica, 16 (1997) 81-86.
  9. R. Boqué and F.X. Rius, Computing detection limits in multicomponent spectroscopic analysis, Trends in Analytical Chemistry, 432 (1997) 432-436.
  10. R. Boqué, M.S. Larrechi and F.X. Rius, Multivariate detection limits with fixed probabilities of error, Chemometrics and Intelligent Laboratory Systems, 45 (1999) 397-408.
  11. R. Boqué, N.M. Faber and F.X. Rius, Detection limits in classical multivariate calibration models, Analytica Chimica Acta, 423 (2000) 41-49.
  12. R. Boqué, J. Ferré, N.M. Faber and F.X. Rius, Limit of detection estimator for second-order bilinear calibration, Analytica Chimica Acta, 451 (2002) 313-321.
  13. P.W.J.M. Boumans, Detection limits and spectral interferences in atomic emission spectrometry, Analytical Chemistry, 66 (1994) 459A-467A.
  14. C.A. Clayton, J.W. Hines and P.D. Elkins, Detection limits with specified assurance probabilities, Analytical Chemistry, 59 (1987) 2506-2514.
  15. D. Coleman, J. Auses and N. Grams, Regulation — from an industry perspective or: relationships between detection limits, quantitation limits, and significant digits, Chemometrics and Intelligent Laboratory Systems, 37 (1997) 71-80.
  16. N. Cressie, Limits of detection, Chemometrics and Intelligent Laboratory Systems, 22 (1994) 161-163.
  17. L.A. Currie, Limits for qualitative detection and quantitative determination. Application to radiochemistry, Analytical Chemistry, 40 (1968) 586-593.
  18. L.A. Currie (Ed.), Detection in analytical chemistry: importance, theory and practice, ACS Symposium Series 361, American Chemical Society, New York, 1988, Chapter 1.
  19. L.A. Currie, In pursuit of accuracy: nomenclature, assumptions, and standards, Pure & Applied Chemistry, 64 (1992) 455-472.
  20. L.A. Currie and W. Horwitz, IUPAC recommendations for defining and measuring detection and quantification limits, Analusis Magazine, 22 (1994) M24-M26.
  21. L.A. Currie, Nomenclature in evaluation of analytical methods including detection and quantification capabilities, Pure & Applied Chemistry, 67 (1995) 1699-1723.
  22. L.A. Currie, Detection: International update, and some emerging di-lemmas involving calibration, the blank, and multiple detection decisions, Chemometrics and Intelligent Laboratory Systems, 37 (1997) 151-181.
  23. L.A. Currie, Detection and quantification limits: origins and historical overview, Analytica Chimica Acta, 391 (1999) 127-134.
  24. W.G. de Ruig, R.W. Stephany and G. Dijkstra, Criteria for the detection of analytes in test samples, Journal of the Association of Official Analytical Chemists, 72 (1989) 487-490.
  25. M.F. Delaney, Multivariate detection limits for selected ion monitoring gas chromatography-mass spectrometry, Chemometrics and Intelligent Laboratory Systems, 3 (1988) 45-51.
  26. R. DiFoggio, Guidelines for applying chemometrics to spectra: feasibility and error propagation, Applied Spectroscopy, 54 (2000) 94A-113A.
  27. N.M. Faber and B.R. Kowalski, Improved estimation of the limit of detection in multivariate calibration, Fresenius Journal of Analytical Chemistry, 357 (1997) 789-795.
  28. M.H. Feinberg, Calibration and confidence interval: the minimum allowable concentration, Journal of Chemometrics, 3 (1988) 103-113.
  29. F.M. Fernández, M.B. Tudino and O.E. Troccoli, Multicomponent kinetic determination of Cu, Zn, Co, Ni and Fe at trace levels by first and second order multivariate calibration, Analytica Chimica Acta, 433 (2001) 119-134.
  30. R. Ferrús and M.R. Egea, Limit of discrimination, limit of detection and sensitivity in analytical systems, Analytica Chimica Acta, 287 (1994) 119-145.
  31. I. García, L. Sarabia, M.C. Ortiz and J.M. Aldama, Three-way models and detection capability of a gas chromatography—mass spectrometry method for the determination of clenbuterol in several biological matrices: the 2002/657/EC European Decision, Analytica Chimica Acta, 515 (2004) 55-63.
  32. I. García, L. Sarabia, M.C. Ortiz and J.M. Aldama, Usefulness of D-optimal designs and multicriteria optimization in laborious analytical procedures. Application to the extraction of quinolones from eggs, Journal of Chromatography A, 1085 (2005) 190-198.
  33. F.C. Garner and G.L. Robertson, Evaluation of detection limit estimators, Chemometrics and Intelligent Laboratory Systems, 3 (1988) 53-59.
  34. R.D. Gibbons, Some statistical and conceptual issues in the detection of low-level environmental pollutants (with discussion), Environmental and Ecological Statistics, 2 (1995) 125-167.
  35. D. Giménez, D. Grasso, L. Sarabia and M.C. Ortiz, Determination of quinolones by fluorescent excitation emission, Talanta, 64 (2004) 442-451.
  36. A. Herrero, S. Zamponi, R. Marassi, P. Conti, M.C. Ortiz and L.A. Sarabia, Determination of the capability of detection of a hyphenated method: application to spectroelectrochemistry, Chemometrics and Intelligent Laboratory Systems, 61 (2002) 63-74.
  37. A. Hubaux and G. Vos, Decision and detection limits for linear calibration curves, Analytical Chemistry, 42 (1970) 849-855.
  38. ISO 3534-1, Statistics-Vocabulary and symbols-Part 1: Probability and general statistical terms, ISO, Genève, 1993.
  39. ISO 11843-1, Capability of Detection - Part 1: Terms and definitions, ISO, Genève, 1997.
  40. ISO 11843-2, Capability of Detection - Part 2: Methodology in the linear calibration case, ISO, Genève, 2000.
  41. R.D. Jiji, G.A. Cooper and K.S. Booksh, Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons, Analytica Chimica Acta, 397 (1999) 61-72.
  42. H. Kaiser, Die Berechnung der Nachweisempfindlichkeit, Spectrochimica Acta, 3 (1947) 40-67.
  43. H. Kaiser, Zum Problem der Nachweisgrenze, Fresenius Zeitschrift der Analytischen Chemie, 209 (1965) 1-18.
  44. I. Kuselman and A. Shenhar, Design of experiments for the determination of the detection limit in chemical analysis, Analytica Chimica Acta, 306 (1995) 301-305.
  45. O.M. Kvalheim and Y.-z. Liang, Heuristic Evolving Latent Projections: resolving two-way multicomponent data. 1. Selectivity, latent-projective graph, datascope, local rank and unique resolution, Analytical Chemistry, 64 (1992) 936-946.
  46. D. Lambert, B. Peterson and I. Terpenning, Nondetects, detection limits and the probability of detection, Journal of the American Statistical Association, 86 (1991) 266-277.
  47. C. Leal, M. Granados, J.L. Beltrán, R. Compañó and M.D. Prat, Application of partial least squares multivariate calibration to triphenyltin determination in sea-water with excitation-emission matrix fluorescence, The Analyst, 122 (1997) 1293-1298.
  48. Y.-Z. Liang, O.M. Kvalheim and A. Höskuldsson, Determination of a multivariate detection limit and local chemical rank by designing a non-parametric test from the zero-component regions, Journal of Chemometrics, 7 (1993) 277-290.
  49. Y.-z. Liang, O.M. Kvalheim, H.R. Keller, D.L. Massart, P. Kiechle and F. Erni, Heuristic Evolving Latent Projections: resolving two-way multicomponent data. 2. Detection and resolution of minor constituents, Analytical Chemistry, 64 (1992) 946-953.
  50. C. Liteanu, E. Hopîrtean and I.O. Popescu, Detection limit of ion-sensitive membrane-electrodes: the electrodic function in the nonlinear domain, Analytical Chemistry, 48 (1976) 2013-2019.
  51. G.L. Long and J.D. Winefordner, Limit of detection: a closer look at the IUPAC definition, Analytical Chemistry, 55 (1983) 712A-724A.
  52. H.-P. Loock and P.D. Wentzell, Detection limits of chemical sensors: Applications and misapplications, Sensors and Actuators B, 173 (2012) 157-163.
  53. A. Lorber, Error propagation and figures of merit for quantification by solving matrix equations, Analytical Chemistry, 58 (1986) 1167-1172.
  54. A. Lorber, A. Harel, Z. Goldbart and I.B. Brenner, Curve resolution and figures of merit estimation for determination of trace elements in geological materials by inductively coupled plasma atomic emission spectrometry, Analytical Chemistry, 59 (1987) 1260-1266.
  55. D. Montville and E. Voigtman, Statistical properties of limit of detection test statistics, Talanta, 59 (2003) 461-476.
  56. D.T. O'Neill, E.A. Rochette and P.J. Ramsey, Method detection limit determination and application of a convenient headspace analysis method for methyl tert-butyl ether in water, Analytical Chemistry, 74 (2002) 5907-5911.
  57. L. Oppenheimer, T.P. Capizzi, R.M. Weppelman and H. Mehta, Determining the lowest limit of reliable assay measurement, Analytical Chemistry, 55 (1983) 638-643.
  58. M.C. Ortiz, J. Arcos, J.V. Juarros, J. López-Palacios and L.A. Sarabia, Robust procedure for calibration and calculation of the detection limit of trimipramine by adsorptive stripping voltammetry at a carbon paste electrode, Analytical Chemistry, 65 (1993) 678-682.
  59. M.C. Ortiz, L.A. Sarabia, A. Herrero, M. S. Sánchez, M.B. Sanz, M.E. Rueda, D. Giménez and M.E. Meléndez, Capability of detection of an analytical method evaluating false positive and false negative (ISO 11843) with partial least squares, Chemometrics and Intelligent Laboratory Systems, 69 (2003) 21-33.
  60. M.C. Ortiz, L.A. Sarabia, I. García, D. Giménez and E. Meléndez, Capability of detection and three-way data, Analytica Chimica Acta, 559 (2006) 124-136.
  61. M.C. Ortiz, L.A. Sarabia and A. Herrero, Robust regression techniques. A useful alternative for the detection of outlier data in chemical analysis, Talanta, 70 (2006) 499-512.
  62. T.L. Rucker, Methodologies for the practical determination and use of method detection limits, Journal of Radioanalytical and Nuclear Chemistry, Articles, 192 (1995) 345-350.
  63. L. Sarabia and M.C. Ortiz, DETARCHI: a program for detection limits with specified assurance probabilities and characteristic curves of detection, Trends in Analytical Chemistry, 13 (1994) 1-6.
  64. L.A. Sarabia, M. Cruz Ortiz, M. Julia Arcos, M. Sagrario Sánchez, A. Herrero and S. Sanllorente, Multivariate detection capability using a neural classifier for nonselective signals, Chemometrics and Intelligent Laboratory Systems, 61 (2002) 89-104.
  65. J. Saurina, C. Leal, R. Compañó, M. Granados, M. Dolors Prat and R. Tauler, Estimation of figures of merit using univariate statistics for quantitative second-order multivariate curve resolution, Analytica Chimica Acta, 432 (2001) 241-251.
  66. A. Singh, Multivariate decision and detection limits, Analytica Chimica Acta, 277 (1993) 205-214.
  67. A. Singh and F.C. Garner, Erratum, Analytica Chimica Acta, 281 (1993) 686.
  68. C.H. Spiegelman, A discussion of issues raised by Lloyd Currie and a cross disciplinary view of detection limits and estimating parameters that are often at or near zero, Chemometrics and Intelligent Laboratory Systems, 37 (1997) 183-188.
  69. M. Thompson, Do we really need detection limits?, The Analyst, 123 (1998) 405-407.
  70. L.E. Vanatta and D.E. Coleman, Calculation of detection limits for a single-laboratory ion-chromatographic method to determine parts-per-trillion ions in ultrapure water, Journal of Chromatography A, 770 (1997) 105-114.
  71. H. van der Voet, W.J. de Boer, W.G. de Ruig and J.A. Van Rijn, Detection of residues using multivariate modelling of low-level GC-MS measurements, Journal of Chemometrics, 12 (1998) 279-294.
  72. H. van der Voet (2002). Detection Limits. In: A.H. El-Shaarawi & W.W. Piegorsch (eds.), Encyclopedia of Environmetrics, Vol. 1, pp. 504-515. Wiley, Chichester, UK.
  73. J. Vial and A. Jardy, Experimental comparison of the different approaches to estimate LOD and LOQ of an HPLC Method, Analytical Chemistry, 71 (1999) 2672-2677.
  74. E. Voigtman, Limits of detection and decision. Part 1, Spectrochimica Acta B, 63 (2008) 115-128.
  75. E. Voigtman, Limits of detection and decision. Part 2, Spectrochimica Acta B, 63 (2008) 129-141.
  76. E. Voigtman, Limits of detection and decision. Part 3, Spectrochimica Acta B, 63 (2008) 142-153.
  77. E. Voigtman, Limits of detection and decision. Part 4, Spectrochimica Acta B, 63 (2008) 154-165.
  78. E. Voigtman and K.T. Abraham, Statistical behavior of ten million experimental detection limits, Spectrochimica Acta B, 66 (2011) 105-113.
  79. M.E. Zorn, R.D. Gibbons and W.C. Sonzogni, Weighted least-squares approach to calculating limits of detection and quantification by modeling variability as a function of concentration, Analytical Chemistry, 69 (1997) 3069-3075.