logo_2Cy.gif
Home About us Media Research Consultancy Training Site map Contact

Home » Research » Analytical figures of merit » References

  1. M.K. Alam and T.M. Alam, Multivariate analysis and quantitation of 17O-nuclear magnetic resonance in primary alcohol mixtures, Spectrochimica Acta, 56A (2000) 729-738.
  2. C.A. Andersson, Direct orthogonalization, Chemometrics and Intelligent Laboratory Systems, 47 (1999) 51-63.
  3. M.A. Arnold, G.W. Small, D. Xiang, J. Qui and D.W. Murhammer, Pure component selectivity analysis of multivariate calibration models from near-infrared spectra, Analytical Chemistry, 76 (2004) 2583-2590.
  4. C.J. Appellof and E.R. Davidson, Three-dimensional rank annihilation for multi-component determinations, Analytica Chimica Acta, 146 (1983) 9-14.
  5. G. Bauer, W. Wegscheider and H.M. Ortner, Selectivity and error estimates in multivariate calibration: application to sequential ICP-OES, Spectrochimica Acta, 46B (1991) 1185-1196.
  6. G. Bauer, W. Wegscheider and H.M. Ortner, Selectivity and limits of detection in inductively coupled plasma optical emission spectrometry using multivariate calibration, Spectrochimica Acta, 47B (1992) 179-188.
  7. A.J. Berger, T.W. Koo, I. Itzkan and M.S. Feld, An enhanced algorithm for linear multivariate calibration, Analytical Chemistry, 70 (1998) 623-627.
  8. G. Bergmann, B. von Oepen and P. Zinn, Improvement in the definitions of sensitivity and selectivity, Analytical Chemistry, 59 (1987) 2522-2526.
  9. I.Y. Bershtein, Criteria and algorithms for the choice of analytical wavelengths in the quantitative spectrophotometric analysis of multicomponent mixtures, Fresenius Zeitschrift der Analytischen Chemie, 332 (1988) 227.
  10. H.F.M. Boelens, W.Th. Kok, O.E. de Noord and A.K. Smilde, Performance optimization of spectroscopic process analyzers, Analytical Chemistry, 76 (2004) 2656-2663.
  11. K.S. Booksh and B.R. Kowalski, Theory of analytical chemistry, Analytical Chemistry, 66 (1994) 782A-791A.
  12. C.E. Boschetti and A.C. Olivieri, Net analyte preprocessing: a new and versatile multivariate calibration technique. Analysis of mixtures of rubber antioxidants by NIR spectroscopy, Journal of Near Infrared Spectroscopy, 9 (2001) 245-254.
  13. J.W.B. Braga and R.J. Poppi, Figures of merit for the determination of the polymorphic purity of carbamazepine by infrared spectroscopy and multivariate calibration, Journal of Pharmaceutical Sciences, 93 (2004) 2124-2134.
  14. R. Bro and C.M. Andersen, Theory of net analyte signal vectors in inverse regression, Journal of Chemometrics, 17 (2003) 646-652.
  15. C.D. Brown, Discordance between net analyte signal theory and practical multivariate calibration, Analytical Chemistry, 76 (2004) 4364-4373.
  16. C.D. Brown and T.D. Ridder, Framework for multivariate selectivity analysis, Part I: Theoretical and practical merits, Applied Spectroscopy, 59 (2005) 787-803.
  17. C.A. Bruckner, B.J. Prazen and R.E. Synovec, Comprehensive two-dimensional high-speed gas chromatography with chemometric analysis, Analytical Chemistry, 70 (1998) 2796-2804.
  18. W.P. Carey, K.R. Beebe, B.R. Kowalski, D.L. Illman and T. Hirschfeld, Selection of adsorbates for chemical sensor arrays by pattern recognition, Analytical Chemistry, 58 (1986) 149-153.
  19. W.P. Carey and B.R. Kowalski, Chemical piezoelectric sensor and sensor array characterization, Analytical Chemistry, 58 (1986) 3077-3084.
  20. M.S. Collado, V.E. Mantovani, H.C. Goicoechea and A.C. Olivieri, Simultaneous spectrophotometric-multivariate calibration determination of several components of ophthalmic solutions: phenylephrine, chloramphenicol, antipyrine, methylparaben and thimerosal, Talanta, 52 (2000) 909-920.
  21. K. Danzer, Selectivity and specificity in analytical chemistry. General considerations and attempt of a definition and quantification, Fresenius Journal of Analytical Chemistry, 369 (2001) 394-400.
  22. G. den Boef and A. Hulanicki, Recommendations for the usage of selective, selectivity and related terms in analytical chemistry, Pure & Applied Chemistry, 55 (1983) 553-556.
  23. F. Dupuis and A. Dijkstra, Application of information theory to analytical chemistry. Identification by retrieval of gas chromatographic retention indices, Analytical Chemistry, 47 (1975) 379-383.
  24. S. Ebel, E. Glaser, S. Abdulla, U. Steffens and V. Walter, Auswahl optimaler Meßwellenlängen bei der spektroskopischen Mehrkomponenten-Analyse, Fresenius Zeitschrift der Analytischen Chemie, 313 (1982) 24-27.
  25. A. Espinosa-Mansilla, M.I.A. Valenzuela, A.M. de la Peña, F. Salinas and F.C. Cañada, Comparative study of partial least squares and a modification of hybrid linear analysis calibration in the simultaneous spectrophotometric determination of rifampicin, pyrazinamide and isoniazid, Analytica Chimica Acta, 427 (2001) 129-136.
  26. A. Espinosa-Mansilla, I. Durán-Merás and R. Galián, Simultaneous fluorimetric determination of pteridin derivatives: comparison between synchronous, partial least-squares, and hybrid linear analysis methods, Applied Spectroscopy, 55 (2001) 701-707.
  27. L. Evans, G. E. Collins, R. E. Shaffer, V. Michelet and J. D. Winkler, Selective Metals Determination with a Photoreversible Spirobenzopyran, Analytical Chemistry, 71 (1999) 5322-5327.
  28. N.M. Faber, A. Lorber and B.R. Kowalski, Comments on "Interrelationships between sensitivity and selectivity measures for spectroscopic analysis", Chemometrics and Intelligent Laboratory Systems, 38 (1997) 89-93.
  29. N.M. Faber, A. Lorber and B.R. Kowalski, Analytical figures of merit for tensorial calibration, Journal of Chemometrics, 11 (1997) 419-461.
  30. N.M. Faber, Notes on analytical figures of merit for nth-order data, Analytical Letters, 31 (1998) 2269-2278.
  31. N.M. Faber, Notes on two competing definitions of multivariate sensitivity, Analytica Chimica Acta, 381 (1999) 103-109.
  32. N.M. Faber, Efficient computation of net analyte signal vector in inverse multivariate calibration models, Analytical Chemistry, 70 (1998) 5108-5110.
  33. N.M. Faber, Mean centering and computation of scalar net analyte signal in multivariate calibration, Journal of Chemometrics, 12 (1998) 405-409.
  34. N.M. Faber, Multivariate sensitivity for the interpretation of the effect of spectral pretreatment methods on near-infrared calibration model predictions, Analytical Chemistry, 71 (1999) 557-565.
  35. N.M. Faber, Exact presentation of multivariate calibration model as univariate calibration graph, Chemometrics and Intelligent Laboratory Systems, 50 (2000) 107-114.
  36. N.M. Faber, J. Ferré, R. Boqué and J.H. Kalivas, Second-order bilinear calibration: the effect of vectorising the data matrices of the calibration set, Chemometrics and Intelligent Laboratory Systems, 63 (2002) 107-116.
  37. N.M. Faber, J. Ferré, R. Boqué and J.H. Kalivas, Quantifying selectivity in spectrophotometric multicomponent analysis, Trends in Analytical Chemistry, 22 (2003) 352-361.
  38. T. Fearn, On orthogonal signal correction, Chemometrics and Intelligent Laboratory Systems, 50 (2000) 47-52.
  39. J. Ferré and F.X. Rius, Equivalence between selectivity and variance inflation factors in multicomponent analysis, Quimica Analytica, 15 (1996) 259-262.
  40. J. Ferré, R. Boqué, B. Fernandez Band, M.S. Larrechi and F.X. Rius, Figures of merit in multivariate calibration. Determination of four pesticides in water by flow injection analysis and spectrophotometric detection, Analytica Chimica Acta, 348 (1997) 167-175.
  41. J. Ferré and F. X. Rius, A graphical criterion to examine the quality of multicomponent analysis: Implications for wavelength selection, Trends in Analytical Chemistry, 16 (1997) 155-162.
  42. J. Ferré and F.X. Rius, Detection and correction of biased results of individual analytes in multicomponent spectroscopic analysis, Analytical Chemistry, 70 (1998) 1999-2007.
  43. J. Ferré, S.D. Brown and F.X. Rius, Improved calculation of the net analyte signal in inverse multivariate calibration, Journal of Chemometrics, 15 (2001) 537-553.
  44. J. Ferré and N.M. Faber, Net analyte signal calculation for multivariate calibration, Chemometrics and Intelligent Laboratory Systems, 69 (2003) 123-136.
  45. J. Ferré and N.M. Faber, Generalization of rank reduction problems with Wedderburn's formula, Journal of Chemometrics, 17 (2003) 603-607.
  46. S.D. Frans, M.L. McConnel and J.M. Harris, Multiwavelength detection and reiterative least squares resolution of overlapped liquid chromatographic peaks, Analytical Chemistry, 57 (1985) 1552-1559.
  47. S.D. Frans and J.M. Harris, Selection of analytical wavelengths for multicomponent spectrophotometric determinations, Analytical Chemistry, 57 (1985) 2680-2684.
  48. K. Fujiwara, J.A. McHard, S.J. Foulk, S. Bayer and J.D. Winefordner, Evaluation of selectivity in atomic absorption and atomic emission spectrometry, Canadian Journal of Spectroscopy, 25 (1980) 18.
  49. H.C. Goicoechea and A.C. Olivieri, Enhanced synchronous spectrofluorometric determination of tetracycline in blood serum by chemometric analysis. Comparison of partial least-squares and hybrid linear analysis calibrations, Analytical Chemistry, 71 (1999) 4361-4368.
  50. H.C. Goicoechea and A.C. Olivieri, Wavelength selection by net analyte signals calculated with multivariate factor-based hybrid linear analysis (HLA). A theoretical and experimental comparison with partial least-squares (PLS), The Analyst, 124 (1999) 725-731.
  51. H.C. Goicoechea and A.C. Olivieri, Determination of bromhexine in cough-cold syrups by absorption spectrophotometry and multivariate calibration using partial least-squares and hybrid linear analyses. Application of a novel method of wavelength selection, Talanta, 49 (1999) 793-800.
  52. H.C. Goicoechea and A.C. Olivieri, MULTIVAR. A program for multivariate calibration incorporating net analyte signal calculations, Trends in Analytical Chemistry, 19 (2000) 599-605.
  53. H.C. Goicoechea and A.C. Olivieri, Sustained prediction ability of net analyte preprocessing methods using reduced calibration sets. Theoretical and experimental study involving the spectrophotometric analysis of multicomponent mixtures, The Analyst, 126 (2001) 1105-1112.
  54. H.C. Goicoechea and A.C. Olivieri, A comparison of orthogonal signal correction and net analyte preprocessing methods. Theoretical and experimental study, Chemometrics and Intelligent Laboratory Systems, 56 (2001) 73-81.
  55. H.C. Goicoechea and A.C. Olivieri, Chemometric assisted simultaneous spectrophotometric determination of four-component nasal solutions with a reduced number of calibration samples, Analytica Chimica Acta, 453 (2002) 289-300.
  56. C.-N. Ho, G.D. Christian and E.R. Davidson, Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons, Analytical Chemistry, 52 (1980) 1071-1079.
  57. J. Inczédy, Some remarks on the quantitative expression of the selectivity of an analytical procedure, Talanta, 28 (1982) 595-599.
  58. J.H. Jiang, R.J. Berry, H.W. Siesler and Y. Ozaki, Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data, Analytical Chemistry, 74 (2002) 3555-3565.
  59. C. Jochum, P. Jochum and B.R. Kowalski, Error propagation and optimal performance in multicomponent analysis, Analytical Chemistry, 53 (1981) 85-92.
  60. L.L. Juhl and J.H. Kalivas, Evaluation of the calibration matrix condition number as a criterion for optimal derivative-spectrophotometric multicomponent quantitation, Analytica Chimica Acta,187 (1986) 347-351.
  61. L.L. Juhl and J.H. Kalivas, Evaluation of experimental designs for multicomponent determinations by spectrophotometry, Analytica Chimica Acta, 207 (1988) 125-135.
  62. A. Junker and G. Bergmann, Auswahl, Vergleich und Bewertung optimaler Arbeitsbedingungen für die quantitative Mehrkomponenten-Analyse. 1. Mitteilung: Zweidimensional überbestimmte Systeme, die Empfindlichkeit als Optimierungsparameter, Fresenius Zeitschrift der Analytischen Chemie, 272 (1974) 267-275.
  63. A. Junker and G. Bergmann, Auswahl, Vergleich und Bewertung optimaler Arbeitsbedingungen für die quantitative Mehrkomponenten-Analyse. 2. Mitteilung: Auswahl optimaler Meßstellen mit Hilfe der Distension der Eichmatrix, Fresenius Zeitschrift der Analytischen Chemie, 278 (1976) 191-198.
  64. A. Junker and G. Bergmann, Auswahl,Vergleich und Bewertung optimaler Arbeitsbedingungen für die quantitative Mehrkomponenten-Analyse. 3. Mitteilung: Genauigkeit von Eichung und Analyse, Festlegung der Zahl der Überbestimmungen, Fresenius Zeitschrift der Analytischen Chemie, 278 (1976) 273-281.
  65. H. Kaiser, Zur Definition von Selektivität, Spezifität und Emfindlichkeit von Analysenverfahren, Fresenius Zeitschrift der Analytischen Chemie, 260 (1972) 252-260.
  66. H. Kaiser, Foundations for the critical discussion of analytical methods, Spectrochimica Acta, 33B (1978) 551-576.
  67. J.H. Kalivas, Precision and stability for the generalized standard addition method, Analytical Chemistry, 55 (1983) 565-567.
  68. J.H. Kalivas, Determination of optimal parameters for multicomponent analysis using the calibration matrix condition number, Analytical Chemistry, 58 (1986) 989-922.
  69. J.H. Kalivas, A simplex optimized inductively coupled plasma spectrometer with minimization of interferences, Applied Spectroscopy, 41 (1987) 1338-1342.
  70. J.H. Kalivas, Variance-decomposition of pure-component spectra as a measure of selectivity, Journal of Chemometrics, 3 (1989) 409-418.
  71. J.H. Kalivas and P. Lang, Condition numbers, iterative refinement and error bounds, Journal of Chemometrics, 3 (1989) 443-449.
  72. J.H. Kalivas, N. Roberts and J.M. Sutter, Global optimization by simulated annealing with wavelength selection for ultraviolet-visible spectrophotometry, Analytical Chemistry, 61 (1989) 2024-2030.
  73. J.H. Kalivas, Assessing spectral orthogonality, Applied Spectroscopy Reviews, 25 (1989-90) 229-259.
  74. J.H. Kalivas and P.M. Lang, Mathematical Analysis of Spectral Orthogonality, Marcel Dekker, New York, 1994.
  75. J.H. Kalivas and P.M. Lang, Interrelationships between sensitivity and selectivity measures for spectroscopic analysis, Chemometrics and Intelligent Laboratory Systems, 32 (1996) 135-149.
  76. J.H. Kalivas and P.M. Lang, Response to "Comments on interrelationships between sensitivity and selectivity measured for spectroscopic analysis" by K. Faber et al., Chemometrics and Intelligent Laboratory Systems, 38 (1997) 95-100.
  77. B. Klabuhn, M. Kuck and H. Goetz, Quantitative Analyse von Mehrkomponenten-Systemen durch digitale Auswertung von UV-Spektren, Fresenius Zeitschrift der Analytischen Chemie, 265 (1973) 12-15.
  78. W.J. Krzanowski, Between-groups comparison of principal components, Journal of the American Statistical Society, 74 (1979) 703-707.
  79. J.J. Leary, A.E. Brookes, A.F. Dorrzapf and D.W. Golightly, An objective function for optimization techniques in simultaneous multiple-element analysis by inductively coupled plasma spectrometry, Applied Spectroscopy, 36 (1982) 37-40.
  80. A. Lorber, Error propagation and figures of merit for quantitation by solving matrix equations, Analytical Chemistry, 58 (1986) 1167-1172.
  81. A. Lorber, A. Harel, Z. Goldbart and I.B. Brenner, Curve resolution and figures of merit estimation for determination of trace elements in geological materials by inductively coupled plasma atomic emission spectrometry, Analytical Chemistry, 59 (1987) 1260-1266.
  82. A. Lorber and B.R. Kowalski, The effect of interferences and calibration design on accuracy: implications for sensor and sample selection, Journal of Chemometrics, 2 (1988) 67-79.
  83. A. Lorber and B.R. Kowalski, Estimation of prediction error for multivariate calibration, Journal of Chemometrics, 2 (1988) 93-109.
  84. A. Lorber, N.M. Faber and B.R. Kowalski, Net analyte signal calculation in multivariate calibration, Analytical Chemistry, 69 (1997) 1620-1626.
  85. D.L. Massart, B.G.M. Vandeginste, S.N. Deming, Y. Michotte and L. Kaufman, Chemometrics: A Textbook, Elsevier, Amsterdam, 1988.
  86. N.J. Messick, J.H. Kalivas and P.M. Lang, Selectivity and related measures for nth-order data, Analytical Chemistry, 68 (1996) 1572-1579.
  87. D.R. Morgan, Spectral absorption pattern detection and estimation. I. Analytical techniques, Applied Spectroscopy, 31 (1977) 404.
  88. D.R. Morgan, Spectral absorption pattern detection and estimation. II. System applications and design procedures, Applied Spectroscopy, 31 (1977) 415.
  89. A. Muñoz de la Peña, A. Espinosa-Mansilla, M.I. Acedo Valenzuela, H.C. Goicoechea and A.C. Olivieri, Comparative study of net analyte signal-based methods and partial least squares for the simultaneous determination of amoxycillin and clavulanic acid by stopped-flow kinetic analysis, Analytica Chimica Acta, 463 (2002) 75-88.
  90. B. Nadler and R.R. Coifman, Partial least squares, Beer's law and the net analyte signal: statistical modeling and analysis, Journal of Chemometrics, 19 (2005) 45-54.
  91. J.T. Olesberg, M.A. Arnold, S.Y.B. Hu and J.M. Wiencek, Temperature-insensitive near-infrared method for determination of protein concentration during protein crystal growth, Analytical Chemistry, 72 (2000) 4985-4990.
  92. M. Otto and W. Wegscheider, Spectrophotometric multicomponent analysis applied to trace metal determinations, Analytical Chemistry, 57 (1985) 63-69.
  93. M. Otto and W. Wegscheider, Selectivity in multicomponent analysis, Analytica Chimica Acta, 180 (1986) 445-456.
  94. M. Otto and T. George, Application of multicomponent spectrophotometry in analysis of copper electroplating bath solutions, Analytica Chimica Acta, 200 (1987) 379-385.
  95. K.S. Park and C.H. Jun, Hybrid linear analysis based on the net analyte signal in spectral responses with orthogonal signal correction, Near Infrared Analysis, 1 (2000) 1-8.
  96. B.-A. Persson and J. Vessman, Generating selectivity in analytical chemistry to reach the ultimate - specificity, Trends in Analytical Chemistry, 17 (1998) 117-119.
  97. B.-A. Persson and J. Vessman, The use of selectivity in analytical chemistry - some considerations, Trends in Analytical Chemistry, 20 (2001) 526-532.
  98. L. Pszonicki, The specificity characteristic of analytical methods-I. Non-specificity coefficients, Talanta, 24 (1977) 613.
  99. T.D. Ridder, C.D. Brown and B.J. Ver Steeg, Framework for multivariate selectivity analysis, Part II: Experimental applications, Applied Spectroscopy, 59 (2005) 804-815.
  100. D. Rodriguez, C.E. Boschetti and A.C. Olivieri, Near-infrared spectroscopic determination of antioxidants and organic acids in rubbers assisted by a new multivariate calibration method based on direct orthogonalization, The Analyst, 127 (2002) 304-309.
  101. M.E. Rueda, L.A. Sarabia, A.Herrero and M.C. Ortiz, Soft calibration in a flow system with electrochemical detection: Application to the determination of phenolic compounds, Analytica Chimica Acta, 446 (2001) 267-277.
  102. E. Sanchez and B.R. Kowalski, Tensorial Calibration: I. First-order calibration, Journal of Chemometrics, 2 (1988) 247-263.
  103. E. Sanchez and B.R. Kowalski, Tensorial Calibration: I. Second-order calibration, Journal of Chemometrics, 2 (1988) 265-280.
  104. M.B. Sanz, L.A. Sarabia, A. Herrero and M.C. Ortiz, Capability of discrimination: application to soft calibration methods, Analytica Chimica Acta, 446 (2001) 297-311.
  105. M.B. Sanz, L.A. Sarabia, A. Herrero and M.C. Ortiz, Multivariate analytical sensitivity in the determination of selenium, copper, lead and cadmium by stripping voltammetry when using soft calibration, Analytica Chimica Acta, 489 (2003) 85-94.
  106. K. Sasaki, S. Kawata and S. Minami, Optimal wavelength selection for quantitative analysis, Applied Spectroscopy, 40 (1986) 185-190.
  107. J. Saurina, C. Leal, R. Compañó, M. Granados, M. Dolors Prat and R. Tauler, Estimation of figures of merit using univariate statistics for quantitative second-order multivariate curve resolution, Analytica Chimica Acta, 432 (2001) 241-251.
  108. R.E. Shaffer and R. Combs, Comparison of spectral and interferogram processing methods using simulated passive Fourier transform infrared remote sensing data, Journal of Applied Spectroscopy, 55 (2001) 1404-1413.
  109. E.T.S. Skibsted, H.F.M. Boelens, J.A. Westerhuis, D.T. Witte and A.K. Smilde, New indicator for optimal preprocessing and wavelength selection of near-infrared spectra, Applied Spectroscopy, 58 (2004) 264-271.
  110. E.T.S. Skibsted, H.F.M. Boelens, J.A. Westerhuis, A.K. Smilde, N.W. Broad, D.R. Rees and D.T. Witte, Net analyte signal based statistical quality control, Analytical Chemistry, 77 (2005) 7103-7114.
  111. J. Sustek, Method for the choice of optimal analytical positions in spectrophotometric analysis of multicomponent systems, Analytical Chemistry, 46 (1974) 1676-1679.
  112. O. Svenson, T. Kourti and J.F. McGregor, An investigation of orthogonal signal correction algorithms and their characteristics, Journal of Chemometrics, 16 (2002) 176-188.
  113. J. Vessman, Selectivity or specificity? Validation of analytical methods from the perspective of an analytical chemist in the pharmaceutical industry, Journal of Pharmaceutical and Biomedical Analysis, 14 (1996) 867-869.
  114. J. Vessman, R.I. Stefan, J.F. van Staden, K. Danzer, W. Lindner, D.T. Burns, A. Fajgelj and H. Müller, Selectivity in analytical chemistry, Pure & Applied Chemistry, 73 (2001) 1381-1386.
  115. M. Valcárcel, A. Gómez-Hens and S. Rubio, Selectivity in analytical chemistry revisited, Trends in Analytical Chemistry, 20 (2001) 386-393.
  116. E. Voigtman, Comparison of signal-to-noise ratios, Analytical Chemistry, 69 (1997) 226-234.
  117. E. Voigtman, Comparison of signal-to-noise ratios, Part 2, Communications in Mathematical and in Computer Chemistry, 60 (2008) 333-348.
  118. Y.D. Wang, O.S. Borgen, B.R. Kowalski, M. Gu and F. Turecek, Advances in 2nd-order calibration, Journal of Chemometrics, 7 (1993) 117-130.
  119. P.D. Wentzell, D.T. Andrews and B.R. Kowalski, Maximum likelihood multivariate calibration, Analytical Chemistry, 69 (1997) 2299-2311.
  120. L. Xu and I. Schechter, Wavelength selection for simultaneous spectroscopic analysis. Experimental and theoretical study, Analytical Chemistry, 68 (1996) 2392-2400.
  121. L. Xu and I. Schechter, A calibration method free of optimal factor number selection for automated multivariate analysis. Experimental and theoretical study, Analytical Chemistry, 69 (1997) 3722-3730.