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Multivariate (Soft)  Self Modeling 
Curve Resolution

• Multivariate Curve Resolution (MCR) methods have 
been shown to be powerful self-soft-modeling tools able to 
investigate complex chemical systems with a minimum 
number of assumptions. 

• Alternating Least Squares (ALS) has become a 
popular method for Multivariate Curve Resolution (MCR) 
due to its flexibility in constraint implementation during the 
optimization of resolved profiles. 



Multivariate (Soft)  Self Modeling 
Curve Resolution

• What are the reliability of  MCR-ALS 
estimations?

• Do the MCR-ALS solutions have rotational and 
scale freedom?

• Are they unique solutions or exist instead a band 
of feasible solutions?

• How errors and noise are propagated from 
experimental data to ALS estimations? 



Goals of this study

• Find the reliability of ALS resolved profiles in 
multivariate curve resolution.

• Estimate prediction error intervals for ALS profiles

• Estimate prediction error intervals for parameters
calculated from MCR-ALS resolved profiles

• Investigate the interaction between propagation of 
errors and rotational ambiguities (noise effects on 
rotational ambiguities and constraints).



Outline:

•Introduction
•Rotational ambiguities and calculation of
feasible bands
•Error propagation and resampling methods
•Results
•Conclusions



Lawton and Sylvestre feasible bands
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Rotational Ambiguities
Factor Analysis (PCA) Data Matrix Decomposition

D = U VT + E
‘True’ Data Matrix Decomposition

D = C ST + E

D = U T T-1 VT + E = C ST + E
C = U T;    ST = T-1 VT

How to find the rotation matrix T?
Matrix decomposition is not unique!

T(N,N) is any non-singular matrix
There is rotational freedom for T



Rotational Ambiguities

Because of rotational ambiguities instead of 
unique solutions, a set of feasible solutions are 
obtained

Feasible solutions are different solutions that fit 
equally well the data under a set of constraints 

For a particular system under a set of constraints, 
feasible solutions are defined from a set of  
possible T values.



Rotational Ambiguities

• T values define the band of feasible 
solutions or feasible bands
• How to define the boundaries of  these 

feasible bands?

• How to represent graphically these 
boundaries?



Is it possible to define band boundaries 
(Tmax and Tmin)?
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How to define and find the band 
boundaries?

• What are the T values giving the maximum/outer 
and minimum/ inner boundaries of the feasible 
bands under a set of constraints?

D*= Cinic ST
inic = 

= Cinic Tmin T-1
min ST

inic = CminST
min = 

= CinicTmax T-1
max ST

inic = CmaxST
max   

where: D(NR,NC), C(NR,N), ST(N,NC), T(N,N)

How to define and evaluate Tmax and Tmin?



Evaluation of boundaries of feasible bands: 
Previous studies

• W.H.Lawton and E.A.Sylvestre, Technometrics, 1971, 13, 617-
633
•O.S.Borgen and B.R.Kowalski, Anal. Chim. Acta, 1985, 174, 1-
26
•K.Kasaki, S.Kawata, S.Minami, Appl. Opt., 1983 (22), 3599-
3603
•R.C.Henry and B.M.Kim (Chemomet. and Intell. Lab. Syst., 
1990, 8, 205-216)
•P.D.Wentzell, J-H. Wang, L.F.Loucks and K.M.Miller 
(Can.J.Chem. 76, 1144-1155 (1998))
•P. Gemperline (Analytical Chemistry, 1999, 71, 5398-5404)
•R.Tauler (J.of Chemometrics 2001, 15, 627-46)
•M.Legger and P.D.Wentzell, Chemomet and Intell. Lab. Syst., 
2002, 171-188



Definition of band boundaries

The whole measured signal is:
D =  ∑ Di = ∑ ci si

T 

The contribution of each species to the whole signal  is:
Di = cisi

T

Solving the Optimization Problem:
max/outer boundary: Find Tmax that makes ci si

T maximum

min/inner boundary: Find Tmin that makes ci si
T minimum



Constrained Non-Linear Optimization 
Problem (NCP)

Find T which makes:

min/max f(T) subject to ge(T) = 0
T and to gi(T) ≤ 0

where T is the matrix of variables, f(T) is a 
non-linear scalar function of T and g(T) is the 
vector of constraints (non-linear function of T)

Matlab Optimizarion Toolbox fmincon function



1) What are the variables of the problem?
T (rotation matrix), 

D = C T T-1 ST

2) What is the objective function f(T) to be  
optimized?

For each species i = 1,..,ns
This gives the
relative signal
contribution of 
species i respect
the global
measured signal !
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f(T) is scalar value between 0 and 1!



The following constraints may be considered:

3) What are the constraints g(T)?

normalization/closure  gnorm/gclos
non-negativity gcneg/gsneg
known values/selectivity gknown/gsel
unimodality gunim
trilinearity (three-way data) gtril

Are they equality or inequality constraints?



4) What are the initial estimates of C, ST?

•Initial estimates of C and ST are obtained by MCR-ALS
•Initial estimates are feasible solutions fulfilling the 
constraints of the system (non-negativity, unimodality, 
closure, selectivity, local rank,…)

5) What are the initial values of T?
•NCP depends on initial estimates of T!  (local minima, 
convergence, speed …)
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Optimization algorithm

Built minimum band
cmin = cALS / Tmin

smin = sALS / Tmin

Find Tmin which gives a minimum
of f(T)

under constraints gi(T)<0, ge(T)=0

Built maximum band
cmax = cALS / Tmax

smax=sALS / Tmax

Find Tmax which gives a maximum
of f(T)

under constraints gi(T)<0. ge(T)=0

Select constraints g(T):
equality ge: normalization/closure, known values,

inequality gi: non-negartivity, selectivity, unimodality, trilinearity,

For each species define objective function
f(T)=norm(c(T)s(T))=norm(cALS T sALS  / T)

Initial  estimations of CALS and SALS

profiles are obtained by MCR-ALS
T=eye(number of species)

•R.Tauler (J.of Chemometrics 2001, 15, 627-46)



Experimental data system under 
study
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stranded heteropolynucleotide polyinosinic-polycytidylic
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concentration profiles

•This system has selectivity! local rank resolution conditions!
•Initial estimates from pure variable detection methods provide good
initial estimates that produce solutions close to the true profiles  

Application of MCR-
ALS to the 
experimental data 
matrix D

Applied constraints in ALS
were:

a) non-negative spectra
b) non-negative 

concentrations
c) closure in concentrations

Initial estimates were obtained 
from purest variables
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Parameter estimation

Mass-action law is only assumed at the site level
and not for the whole polynucleotide molecule

Evaluation of constants
from intersection profiles Proposed species:

poly(I)-poly(C+) 

poly(I)-poly(C)-poly(C+) + H 

poly(I)-poly(C) + H
4.9244pK2

3.6660pK1



Estimation of band boundaries
(max/min contribution of each species)

of feasible solutions

Large Rotational
ambiguities
were present
when constraints
applied were
only closure
non-negativity!!!
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Estimation of band boundaries
(max/min contribution of each species)

of feasible solutions

0

0.2

0.4

0.6

0.8

1

Rotational
ambiguities
nearly
dissappear
when selectivity
constraint was
applied!!!

5 10 15 20 25 30 35

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8



Outline:

•Introduction
•Rotational ambiguities and feasible bands
•Error propagation and resampling methods
•Results
•Conclusions



Error propagation and resampling 
methods

•How experimental error/noise in the input data 
matrices affects MCR-ALS results?

•For ALS calculations there is no known 
analytical formula to calculate error estimations. 
(i.e. like in linear lesast-squares regressions)

•Bootstrap estimations using resampling methods 
is attempted



Resampling Methods

Resampling Methods
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Data
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Building theoretical data

Experimental 
Data, Dexp

MCR-ALS

Experimental
error

E
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Montecarlo Simulations

N0.1, N1, N2 and N5

Theoretical
Data

D

Random
Error

New Data Matrix
MCR-ALS

Concentration
profiles

Pure Spectra

M0.1 = D +N0.1 M1 = D +N1
M2= D +N2 M5= D +N5 C

250 times each noise level!
1000 simulations!

MATLAB function randomn with zero 
mean and relative sd 0.1%, 1%, 2% and 
5% of maximum signal in D

ST



Noise Addition Simulations
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1000 simulations!

MCR-ALS

C

ST
Dexp

N0.1, N1, N2 and N5

MATLAB function randomn with zero 
mean and relative sd 0.1%, 1%, 2% and 
5% of maximum signal in D



Jackknife SimulationsExperimental
Data

Dexp (36,81)

Reduced Matrix (5,14,23,32)    (32,81)J5

Reduced Matrix (1,10,19,28)    (32,81)

Reduced Matrix (2,11,20,29)    (32,81)

J1

J2+N0.1
N1
N2
and
N5

Reduced Matrix (4,13,22,31)    (32,81)
Reduced Matrix (3,12,21,30)    (32,81)J3

J4

New Data
Matrix

Dnoise (36,81)

Random Error

=

Reduced Matrix (6,15,24,33)    (32,81)J6

Reduced Matrix (7,16,25,34)    (32,81)J7

Reduced Matrix (8,17,26,35)    (32,81)J8
D0.1, D1, D2, D5 Reduced Matrix (9,18,27,36)    (32,81)J9



Jackknife Simulations

Jack Knife
Reduced

Data Matrix
JN

Concentration
profiles

CMCR-ALS

Pure Spectra
ST

N = 1,..., 9
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Presentation of Results

1. Calculation of species profiles error bands: 
Mean profile, maximum and minimum profiles, 
standard deviation profiles and confidence range  
profiles

2. pKa (parameter) error estimations

3. Rotational ambiguity effects on error estimates
from resampling methods. Calculation of 
boundaries of feasible bands from mean 
species profiles error bands
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Monte Carlo Simulations
pKa error estimations

9e-154.92444e-153.66600 %

0.00124.92436e-43.66620.1 % 

0.01284.92620.00653.66961 %

0.75955.07450.43493.97625 %

0.02454.91730.01273.67612 %

Std. devValueStd. devValueNoise 
added

pK2pK1



Calculation of band boundaries from mean species 
profiles error bands (under non-negativity and 

closure constraints)
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Calculation of band boundaries from mean profile
error bands (under non-negativity, closure  and 

selectivity constraints)
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Noise Addition Simulations
Concentration profiles: 
Mean max and min profiles
Confidence range profiles
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Noise Addition Simulations
Spectra profiles: 
Mean, max and min profiles
Confidence range profiles

240 250 260 270 280 290 300 310 320
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Mean, bands and confidence range of spectra

Wavelength /nm

Ab
so

rb
an

ce
 /a

.u
.

240 250 260 270 280 290 300 310 320

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Mean, bands and confidence range of spectra

Wavelength /nm

Ab
so

rb
an

ce
 /a

.u
.

240 250 260 270 280 290 300 310 320
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Mean, bands and confidence range of spectra

Wavelength /nm

Ab
so

rb
an

ce
 /a

.u
.

240 250 260 270 280 290 300 310 320
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Mean, bands and confidence range of spectra

Wavelength /nm

Ab
so

rb
an

ce
 /a

.u
.



Noise Addition Simulations
pKa error estimations

2e-144.92382e-143.65390 %

0.00224.92266e-43.65400.1 % 

0.02644.91340.00613.65921 %

1.12175.33080.48734.07545 %

0.04094.91000.01013.66562 %

Std. devValueStd. devValueNoise 
added

pK2pK1



Calculation of band boundaries from mean profile
error bands (under non-negativity and closure  

constraints) at 1% error noise addition

0 10 20 30 40 50 60 70 80 90
-0.5

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2



Jackknife Simulations at 1% noise; Concentration profiles: 
Mean max and min profiles and confidence range profiles

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M ean, bands  and c onfidenc e range pf c onc entrat ion profiles

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

. 
co

nc
en

tr
at

io
n

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pH 

2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pH



Jackknife Simulations at 1% noise; spectra profiles: 
Mean max and min profiles and confidence range profiles
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Jackknife Simulations
pKa error estimations

at 1% noise level

Nº exp pK1 pK2

1
2
3
4
5
6
7
8
9

3.6629 ± 0.0066
3.6601 ± 0.0074
3.6590 ± 0.0059
3.6580 ± 0.0056
3.6333 ± 0.0130
3.6882 ± 0.0198
3.6591 ± 0.0064
3.6592 ± 0.0059
3.6582 ± 0.0065

4.9135 ± 0.0277
4.8989 ± 0.0221
4.9122 ± 0.0261
4.9221 ± 0.0189
4.9018 ± 0.0236
4.9144 ± 0.0267
4.9144 ± 0.0256
4.9144 ± 0.0253
4.9233 ± 0.0239



Parameter Estimation
Summary of results

Real 0.1 %

1.09060.51450.04710.01240.02440.00860.00320.0038--
Stand.
dev.

5.32924.08224.91313.66734.91283.65984.91993.6546--Value

JackKnife

1.12170.48730.04090.01010.02640.00610.00220.0006--
Stand.
dev.

5.33084.07544.91003.66564.91343.65924.92263.6540--Value

Noise Addition

0.75950.43490.02450.01270.01280.00650.00120.0006--
Stand.
dev.

5.07453.97624.91733.67614.92623.66964.92443.6662--Value
MonteCarlo 
Simulations

--------4.92443.6660ValueTheoretical Value

pk2pk1pk2pk1pk2pk1pk2pk1pk2pk1

5 %2 %1 %
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Summary
•Different approaches for calculation of error propagation 
and prediction intervals of estimations have been 
compared including: Monte Carlo simulations, Noise 
addition resampling approaches and Jackknife based 
methods. 

•The obtained results allowed a preliminary investigation 
of the noise effects on MCR-ALS resolved profiles and on 
parameters from them estimated, and allowed also a 
preliminary investigation of noise effects on rotational 
ambiguities. 

•The study has been shown for the resolution of a three-
component equilibrium system with overlapping 
concentration and spectra profiles



Conclusions
-Rotational ambiguity effects on species profiles depend 
on the structure and constraints of the data system.

-Rotational ambiguities effects at low noise levels in a
system with low selectivity are more important than error
propagation effects

-However, at high noise levels (≥ 5%), error propagation 
effects became larger than rotational ambiguities effects 
and they are both mixed and undistinguishable

- Obviously the best is to have a system with enough 
selectivity (low rotational ambiguities) and with low noise 
levels (low error propagation)
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